
Catherine’s Notes January 20, 2021

I N T R O D U C T I O N T O R O C K E T P R O P U L S I O N

L2: Rocket Performance

How much propellant do we need to send a rocket to space?
In this lecture, we’ll review the fundamentals of rocket performance.
Using Newton’s Second Law, we’ll determine the thrust of a rocket that
continuously expels exhaust. Then we’ll learn about specific impulse,
which is basically the "fuel efficiency" of a rocket. Finally, we’ll derive
the Ideal Rocket Equation, which allows us to calculate the propellant
mass required to send things to space!

Learning Goals:

1. Quantify the thrust of a rocket that continuously expels mass
using Newton’s Second Law.

2. Define exhaust velocity, impulse, and specific impulse.

3. Calculate the mass of propellant required to change the veloc-
ity of a rocket-propelled vehicle by a specified amount using
the Ideal Rocket Equation.

ROCKET THRUST

Figure 1: A launch vehicle with chem-
ical rockets which produce a steady
stream of exhaust.

In this lecture, we will calculate the thrust of a rocket that produces
a constant stream of exhaust. In chemical rocket engines, the exhaust
is a stream of gas produced by a combustion reaction. This situation
needs to be approached differently from the case in which a rocket
expels discrete amounts of mass. In the tennis ball problem from
last lecture, one chunk of mass was expelled at a particular instant
in time. In the steady exhaust stream problem, mass is continuously
leaving the rocket at a given rate over a period of time. To address
the problem of a constant exhaust stream, we need to define a quan-
tity called the mass flow rate.

definition 2.1 The rate at which mass is exhausted from a
rocket is called the mass flow rate. It is denoted by the symbol
ṁ and typically has units of kg/s.

Let’s draw a diagram of the problem! Figure 2 shows our rocket
flying through space at a velocity, v, and with a mass, m. Both the
velocity and mass are functions of time. We expect the mass of the

https://stayva.org/blog/2018/10/19/nasa-rocket-launch-wallops
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Figure 2: A rocket-propelled vehicle
flying through space. The rocket engine
continuously expels exhaust at a given
mass flow rate with a given exhaust
velocity.

vehicle to decrease over time as propellant is expelled from the rocket
engine. We also expect the velocity of the vehicle to increase over
time as the thrust produced by the rocket engine accelerates it.

We will assume that the propellant is expelled from the vehicle at a
given mass flow rate, denoted by ṁ. We’ll also assume that the pro-
pellant is exhausted from the vehicle at a constant velocity, denoted
by c, called the exhaust velocity. In this example, the mass flow rate
and exhaust velocity are assumed to be constant.

definition 2.2 The velocity at which the exhaust stream
exits the rocket is called the exhaust velocity. This velocity is
measured relative to the rocket engine.

How can we express the thrust in terms of the mass flow rate and
exhaust velocity? Let’s start by applying Newton’s Second Law to
the exhaust of the rocket. The only force acting on the exhaust is the
thrust, which comes from the rocket pushing on the exhaust. We will
also assume that the thrust force on the exhaust points in the positive
x-direction, so we will only need to consider the change in linear
momentum along the x-axis. We can write Newton’s Second Law as:

F =
dp
dt

(1)

where F is the thrust and p is the linear momentum of the exhaust in
the x-direction.

Let’s consider a chunk of exhaust as it is accelerated out of the rocket
engine. The momentum of the chunk changes as it is accelerated by
the thrust force. We’ll assume that the exhaust has zero momentum
before it is accelerated, which is basically saying that the initial ve-
locity of the exhaust is zero. We can write this as pi = 0, where pi

is the initial momentum. Somehow, the rocket engine accelerates
the exhaust to a speed c. The final momentum of the exhaust, p f , is
the product of the mass of the exhaust chunk, ∆m, and the exhaust
velocity, c:

p f = ∆m c (2)
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Therefore, the change in linear momentum of a chunk of exhaust is:

∆p = p f − p0

= ∆m c
(3)

By Newton’s Second Law, the change in exhaust momentum per unit
time is equal to the thrust force acting on the exhaust. We can write
the change in momentum of the exhaust per unit time as:

∆p
∆t

=
∆m
∆t

c

= ṁc
(4)

where ∆t is the time period over which the thrust force acts on the
exhaust. This is equal to the time it takes the exhaust to pass through
the rocket engine. We can recognize that the mass of the exhaust
chunk divided by the time it takes for the exhaust to pass through
the rocket is equal to the mass flow rate, ṁ.

Now we can compute the thrust force, which, assuming there are no
other forces acting on the exhaust, is equal to ∆p/∆t:

F = ṁc (5)

The thrust of a rocket that continuously expels exhaust is given by
the product of the mass flow rate and the exhaust velocity. Remem-
ber that the thrust force that propels the exhaust out of the rocket
engine is equal to the force that accelerates the rocket vehicle. Let’s
do an example!

Example 1:

We can apply equation 5 to our previous example about ten-
nis balls. If we want to produce a thrust of 100 N, how many
tennis balls does the astronaut need to serve per second? The
mass of a tennis ball, mb, is 59 g. Assume that the exhaust ve-
locity, c, of the tennis balls is 235 km/hr (which is equivalent
to 65 m/s).

Let’s begin by calculating the required mass flow rate of tennis
balls using equation 5:

ṁ =
F
c
=

100 N
65 m/s

= 1.54 kg/s (1.1)
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Now let’s calculate the serve rate, ṅ, which is the number of
tennis balls served per second. The serve rate is equal to the
mass flow rate divided by the mass of each tennis ball:

ṅ =
ṁ
mb

=
1.54 kg/s
0.057 kg

= 27 tennis balls/second (1.2)

The astronaut needs to serve 27 million tennis balls per second
to produce a thrust of 100 N, which is equivalent to the weight
of of 5 pounds. I think we’re going to need a better way to
produce thrust!

Okay, okay, I know the tennis ball example is getting a little old.
How much thrust do REAL rockets produce? Well, it depends on the
type of rocket and the mission goal. Chemical rockets typically pro-
duce 102 − 107 Newtons of thrust. The first stage of a launch vehicle,
which uses chemical rockets, typically produces at least one million
Newtons of thrust force. The chemical rocket that was used to lift
the Lunar Module off the surface of the Moon produced 16,000 N of
thrust. Electrically-powered rockets, on the other hand, produce less
than 1 N of thrust. We will investigate why chemical and electrical
rockets have such different performance in later lectures.

Example 2:

Let’s estimate the thrust of the Space Shuttle Main Engine
(SSME). The mass flow rate, ṁ, is 470 kg/s and the exhaust
velocity, c, is 4440 m/s.

F = ṁc = (470 kg/s)(4440 m/s) = 2.01 × 106 N (2.1)

The SSME produces approximately two million Newtons of
thrust, which is equivalent to the weight of a blue whale!

Figure 3: One Space Shuttle Main En-
gine produces a thrust force equivalent
to the weight of a blue whale! Blue
whales can be up to 100 ft in length.

https://www.thesun.co.uk/news/9109511/blue-whale-photos-diver-sri-lanka/
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SPECIFIC IMPULSE

Now that we have an expression for rocket thrust, we can define
some other performance parameters for rockets. One of the most
important performance metrics for rockets is the specific impulse,
which is considered the "fuel efficiency" of a rocket.

definition 2.3 The specific impulse is defined as the total
impulse delivered by the rocket engine divided by the total
weight of propellant expended. The units for specific impulse,
denoted by the symbol Isp, are seconds.

Figure 4: Fuel efficiency is measured in
seconds?? It sounds strange, but yes,
fuel efficiency for rockets is measured
in seconds. You can think of the Isp as
the number of seconds that 1 kilogram
of propellant can be used to produce 9.8
Newtons of thrust. The higher the Isp,
the longer the rocket can operate per
kilogram of propellant.

Let’s derive an expression for the specific impulse. The total impulse,
IT , is the force delivered by the rocket integrated over time:

IT =
∫ tb

0
F(t)dt (6)

where tb is the total time during which the rocket fires, which is also
called the "burn time." Note that the thrust force, F, can be a function
of time.

To compute the specific impulse, we need to calculate the total
weight of expended propellant, WT . This can be found by integrating
the mass flow rate of the exhaust over the burn duration:

WT = g
∫ tb

0
ṁ(t)dt (7)

where g is the acceleration due to gravity on Earth’s surface. Note
that the mass flow rate can be a function of time.

Now we can write an expression for the specific impulse:

Isp =
IT

WT
=

∫ tb
0 F(t)dt

g
∫ tb

0 ṁ(t)dt
(8)

We can simplify this expression by assuming that the thrust and mass
flow rate are constant during the rocket burn:

Isp =
F

ṁg
(9)

Given our expression for rocket thrust, see equation 5, we can express
the specific impulse as:

Isp =
c
g

(10)

Later in this lecture, we’ll learn that higher specific impulse results in
higher fuel efficiency. To achieve a high specific impulse, we need to
design a rocket with a high exhaust velocity.
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DERIVATION OF THE IDEAL ROCKET EQUATION

In this section, we will derive a fundamental equation of rocket
propulsion, called The Rocket Equation. This equation will allow us
to calculate how much propellant we need to accelerate a vehicle by
a specified change in velocity, ∆v. It will also help us understand the
relationship between fuel efficiency and specific impulse.
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c

Figure 5: A rocket-propelled vehicle
that continuously expels exhaust. The
dashed box defines the system, which
contains the vehicle and all of the
exhaust that has been expelled. You
can imagine that the dashed box is a
flexible container that expands so it
always contains the vehicle and all of
the exhaust.

Let’s consider the total momentum of the vehicle and the exhaust.
We can think of the vehicle and the exhaust as a system, as shown
in Figure 6. We will assume that no external forces, such as gravity,
are acting on the system. This allows us to assume that the total
momentum of the system is constant, by Newton’s Second Law. In
other words, the rate of change of the total momentum of the system
is zero:

dp
dt

∣∣∣
total

=
dp
dt

∣∣∣
vehicle

+
dp
dt

∣∣∣
exhaust

= 0 (11)

The momentum of the vehicle is mv, where the mass and velocity of
the vehicle are functions of time. We can calculate the time rate of
change of the vehicle momentum by differentiating mv with respect
to time:

dp
dt

∣∣∣
vehicle

=
d
dt
(mv) =

dm
dt

v + m
dv
dt

(12)

The rate of change of the mass of the vehicle, dm/dt, is related to the
mass flow rate of the exhaust, ṁ by the following expression:

dm
dt

= −ṁ (13)

The vehicle loses mass at the same rate that the exhaust plume gains
mass. The time rate of change of the momentum of the vehicle is:

dp
dt

∣∣∣
vehicle

= m
dv
dt

− ṁv (14)
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Now let’s consider the time rate of change of momentum of the ex-
haust plume. The total momentum of the exhaust, pe, is:

pe = meve (15)

where me is the mass of the exhaust and ve is the velocity of the
exhaust relative to a stationary observer. To obtain the time rate of
change of momentum of the exhaust, let’s differentiate equation 15

with respect to time:

dp
dt

∣∣∣
exhaust

=
dme

dt
ve + me

dve

dt
(16)

The rate of change of the mass of the exhaust plume is ṁ. Also, the
velocity of the exhaust, ve, is constant for a particular section of the
exhaust plume. Once the exhaust leaves the vehicle, it is not acted
upon by any forces, so its speed remains constant. Therefore we can
conclude that dve/dt = 0. The time rate of change of the momentum of
the exhaust is:

dp
dt

∣∣∣
exhaust

= ṁ ve (17)

What is ve? It’s the velocity of the exhaust relative to a stationary
observer, which depends on the velocity of the rocket!

Consider a stationary observer watching the vehicle fly through space
at a velocity v in the positive x-direction. The observer also sees the
exhaust leaving the vehicle. The exhaust is expelled in a direction op-
posite of the vehicle’s motion at a velocity, c. Remember that c is the
exhaust velocity, which is measured relative to the vehicle. If the vehicle
were stationary, then the net velocity of the exhaust would be −c,
since we assume that the exhaust travels in the negative x-direction.
But we know that the vehicle is not stationary, it’s moving in the
positive x-direction at a velocity, v. To a stationary observer, the net
velocity of the exhaust leaving the rocket at a particular moment in
time is v − c. So we can write equation 17 as

dp
dt

∣∣∣
exhaust

= ṁ(v − c) (18)

Now we can combine equation 14 and equation 18 to obtain the time
rate of change of the total momentum of the system:

dp
dt

∣∣∣
total

= m
dv
dt

− ṁv + ṁ(v − c)

= m
dv
dt

− ṁc

(19)
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By Newton’s Second Law, the time rate of change of the momentum
of the system is zero:

0 = m
dv
dt

− ṁc (20)

Using equation 13, we can write equation 20 as:

m
dv
dt

= −dm
dt

c (21)

We can cancel out the dt’s to obtain a first order, linear differential
equation:

m dv = −dm c (22)

Differential equation? Don’t worry,
you’re not expected to know what
differential equations are or how to
solve them! Just follow along with
the derivation and trust your calculus
instincts :) The end result will be what’s
most important for the course.

To solve this equation, we need to rearrange it so the m variables are
on one side of the equation and the v variables are on the other.

dm
m

= −dv
c

(23)

Now we can integrate both sides. On the lefthand side we will inte-
grate from the initial mass of the vehicle, m0, to the final mass of the
vehicle, m f . On the righthand side we will integrate from the initial
velocity of the vehicle, v0, to the final velocity of the vehicle, v f .

∫ m f

m0

dm
m

= −
∫ v f

v0

dv
c

ln (m)
∣∣∣m f

m0
= −1

c
v
∣∣∣v f

v0

ln
(m f

m0

)
= −

v f − v0

c

(24)

Let’s call the change in velocity of the vehicle, v f − v0, delta-v.

definition 2.4 Delta-v is the change in velocity of a rocket-
propelled vehicle. It is typically denoted by the symbol ∆v
and has units of m/s.

We can rewrite equation 24 using ∆v = v f − v0. We will also assume
that the final mass of the rocket is equal to the initial mass minus the
mass of propellant expended, mp.

ln
(m0 − mp

m0

)
= −∆v

c
(25)
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Finally, let’s solve for mp/m0 to obtain the Ideal Rocket Equation:

mp

m0
= 1 − exp (−∆v/c) (26)

Equation 26 is called the Ideal Rocket Equation because it can only
be applied to idealized scenarios where there are no external forces
acting on the rocket-exhaust system. Note that launching from the
surface of the Earth involves external forces (gravity!) so the Ideal
Rocket Equation can’t be used to accurately estimate the propellant
needed to get to space! We will learn more about this next lecture.

The Ideal Rocket Equation allows us to calculate the mass of pro-
pellant required to achieve a desired change in vehicle velocity, ∆v,
given a constant exhaust velocity, c, and an initial vehicle mass, m0.
Notice that the larger the initial vehicle mass, the more propellent
mass is needed to achieve some ∆v. This makes sense, because it
takes more energy to move a heavier object. Also the larger the re-
quired ∆v, the more propellant mass is needed. This also makes
sense because more energy is needed to create a larger increase in the
kinetic energy of the vehicle.

We can also notice that the propellant mass is inversely related to
the exhaust velocity. This means that a higher exhaust velocity re-
sults in a lower required propellant mass. This relationship is less
intuitive, but we can understand it by considering a unit of exhaust
of fixed mass. The faster the unit of exhaust leaves the vehicle, the
more momentum it imparts to the vehicle. This means more thrust
and thus more acceleration. Therefore, the faster the propellant is
expelled from the vehicle, the more quickly the vehicle accelerates, so
less propellant mass is needed to achieve a given ∆v.

We can also write the Ideal Rocket Equation in terms of the specific
impulse:

mp

m0
= 1 − exp

(
− ∆v

g Isp

)
(27)

Now we can more clearly see the relationship between Isp and fuel
efficiency. The higher the Isp, the less propellant mass needed to
achieve a given ∆v.
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