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I N T R O D U C T I O N T O R O C K E T P R O P U L S I O N

L3: Gravity and Orbits

Figure 1: Artist’s rendering of the Solar
System planets orbiting the Sun.

What are orbits and how do we describe them mathematically?
In this lecture, we will learn about orbits! We’ll start by reviewing how
to represent gravitational forces using vector notation. Next, we’ll con-
sider circular orbits, which are the simplest type of orbit. Many satellites
are placed in circular orbits around the Earth. Next, we’ll investigate the
motion of the planets, which can be described by Kepler’s Laws. The
planets travel around the Sun in ellipses, so we’ll learn how to mathe-
matically describe elliptical orbits.

Learning Goals:

1. Calculate the gravitational force that arises between two
masses using vector notation.

2. Draw a diagram of a satellite in a circular orbit, including the
radius and velocity vectors of the satellite.

3. Compute the velocity of a circular orbit of a specified radius.
Use the velocity to compute the orbital period.

4. Use Kepler’s Laws to describe the characteristics of elliptical
orbits.

5. Write the equation for the specific energy of an orbit.

GRAVITY

Gravity is the most apparent force in nature because we can clearly
observe its effects. When we accidentally drop something, like an
apple, for example, we know it’s gravity that makes the object fall
to the ground. When we ride in a car down a big hill, we know it’s
gravity that makes the car go faster and faster. Based on what we
observe in our everyday lives, we might conclude that gravity makes
things fall down and keeps us tethered to Earth’s surface. This is
true, but gravity is more than that!

definition 3.1 Gravity is the mutual interaction that arises
between bodies that have mass. It is an attractive force that
pulls massive objects towards one another.
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Weight

Let’s start by considering the gravity that we know best, the force
that gives objects their weight. For example, the weight, W, of an
object of mass m is given by the following expression:

W = mg (1)

where g is the acceleration due to gravity on Earth’s surface. The
value of g depends on what altitude, the height above sea-level,
you’re located at. At sea-level, g = 9.81 m/s2.

The force of gravity keeps objects firmly on the ground. For an object
to leave Earth’s surface, even if only for a brief moment, we need to
exert a force that is larger than the weight of the object. For example,
most of us have probably thrown a ball into the sky. We were able
to do this because we could exert an upward force on the ball larger
than its weight. Ultimately the ball fell back to the ground, but for
a brief moment it flew up above Earth’s surface. Likewise, rockets
on the launch pad need to produce a thrust force that exceeds the
total weight of the vehicle for the rocket to even lift off the ground.
To reach orbit, rockets must continuously apply a thrust force greater
than the weight of the vehicle as the vehicle ascends through Earth’s
atmosphere.

General Definition of Gravity

What if we are not on Earth’s surface? How do we describe gravity
then? Let’s consider two masses, m1 and m2, in the xy-plane, shown
in Figure 2. The vector~r1 describes the location of the first mass, rel-
ative to the origin of the coordinate system. Likewise, the vector~r2

describes the location of the second mass, relative to the origin. Fi-
nally, the vector~r12 describes the location of the second mass relative
to the first mass. Note that there are two ways to get from the ori-
gin to the second mass. One can follow along~r2 directly, or one can
follow~r1 and then follow~r12. Therefore we can say that~r1 +~r12 =~r2.

We know that an attractive force will arise between these two masses,
shown in Figure 3. The first mass will exert a force, ~F12, on the sec-
ond mass, pulling the second mass towards itself. The second mass
will exert an equal and opposite force, ~F21 on the first mass. By New-
ton’s Third Law, we know that ~F12 = −~F21.
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Figure 2: Locations of two masses in the
xy-plane.
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Figure 3: Attractive forces due to
gravity between two masses in space.
~F12 has the same magnitude but points
in the opposite direction of ~F21.

We can express the force due to gravity on the second mass by the
presence of the first mass using the following mathematical formula:

~F12 = −G m1 m2

(r12)
2 r̂12 (2)

where G is the Gravitational constant, which is equal to 6.67 ×
10−11 m3/kg · s2. The distance between the two masses is given by
r12, which is the magnitude of the vector~r12. The vector r̂12 is a unit
vector that points from the first mass to the second mass, and is de-
fined as:

r̂12 =
~r12

r12
(3)

Notice that the unit vector has a magnitude equal to 1. When we
multiply something by a unit vector, we don’t change the magni-
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tude because anything multiplied by 1 is itself. Unit vectors are used
because they allow us to specify a direction.

The magnitude of the gravitational force on the second mass due to
the presence of the first mass is:

F12 =
G m1 m2

(r12)2 (4)

Just knowing the magnitude isn’t enough information to understand
how the force will affect the motion of the second mass. We need to
know what direction the force acts in! This is where the unit vector
comes in. We know the force should point towards the first mass,
because gravity is an attractive force. That’s why we use the unit
vector to specify the direction pointing from the first mass to the
second mass. We also put a minus sign to indicate that the force is
attractive, in that it points from the second mass to the first mass.

We can observe from equation 2 that the magnitude of the grav-
itational force between the two masses decreases as the distance
between the two objects increases. The force also decreases as the
masses of the objects decrease. As a rocket ascends through Earth’s
atmosphere, it gets farther and farther away from Earth’s center.
Therefore, we should expect the gravitational force pulling the rocket
towards the center of the Earth to decrease with increasing altitude.

CIRCULAR ORBITS

Once a rocket escapes Earth’s surface, it usually enters an orbit
around the Earth.

Figure 4: A satellite in a circular orbit
around the Earth. It travels along this
path again and again.

definition 3.2 An orbit is a stable, closed trajectory around
a massive body, such as the Earth.

The simplest type of orbit is a circular orbit. The path of a circular
orbit is a circle, which is shown in Figure 5. The diagram shows
a massive body, with mass M, at the center of the orbit. A much
smaller body, with mass m, is shown following a circular path around
the massive body. This diagram could be used to represent a satellite
orbiting the Earth or perhaps the Earth orbiting the Sun.

The gravitational force acting on the smaller body is:

~FG = −µm
r2 r̂ (5)

Where µ is the gravitational parameter, which is the product of the
Gravitational constant and the mass of the larger body: µ = GM. The
gravitational parameter is used to make computations easier.

https://spaceflight.com/spaceflight-offers-rideshare-launches-to-geosynchronous-transfer-orbit/
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The path of the orbit is drawn with a
dashed grey line.

The smaller body follows a circular path, which is a curved trajectory.
Recall that the centripetal acceleration,~ac, of a body traveling along a
circular path is given by the following expression:

~ac = −
v2

r
r̂ (6)

where v is the magnitude of the velocity of the body, also called its
speed, and r is the radius of the circular path. Note that the cen-
tripetal acceleration points towards the center of the circular path.

We can write Newton’s Second Law for the smaller body:

~FG = m~ac

−µm
r2 r̂ = −mv2

r
r̂

(7)

Observe that the gravitational force is balanced by the centripetal
acceleration. Since both vectors point along the radial direction, we
can remove the unit vectors and solve equation 7 for the speed of the
smaller body:

v =

√
µ

r
(8)

The velocity of a body in a circular orbit is constant in magnitude. The
direction of the velocity is always perpendicular to the radial vector
that points from the central body to the smaller body.

The magnitude of the velocity only depends on the mass of the cen-
tral body and the orbital radius. The velocity increases as the mass of
the central body increases. The velocity also increases as the orbital
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radius decreases. Note that the velocity does not depend on the mass
of the smaller body because the m’s canceled out in equation 7.

A smaller body orbits a massive body along a circular path with a
radius, r, if and only if:

1. The smaller body is at an orbital altitude such that the distance
between it and the center of the massive body is r.

2. The magnitude of the velocity of the smaller body is exactly
that prescribed by equation 8.

3. The direction of the smaller body’s velocity is always perpen-
dicular to the radial vector that points from the center of the
massive body to the smaller body. In other words, the velocity
direction is always tangential to the circular path.

If any of these items are not satisfied, the body will not travel in a
circular orbit with a radius r. Instead, the body will probably travel
in an elliptical orbit.

Common Satellite Orbits

There are two major categories of orbits around the Earth that most
satellites are placed in:

Figure 6: The International Space
Station (ISS). Did you know that the ISS
is as big as an American football field?

1. Low Earth Orbit (LEO) - LEO orbits range from 100-1000 km
in altitude. For example, the International Space Station (ISS) is
180 km above Earth’s surface. Satellites in LEO orbits complete
several revolutions around the Earth per day. This means that LEO
satellites travel over many different regions of the Earth each day.

2. Geostationary Orbit (GEO) - GEO orbits form a narrow band
around 35,786 km in altitude. GEO orbit is special because its
period is exactly 1 day. This means that satellites stay above the
same region of the Earth at all times.

https://en.wikipedia.org/wiki/International_Space_Station
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Example 1:

Let’s do an example with circular orbits! The ISS follows a cir-
cular orbit around the Earth at an altitude of 180 km. What is
the orbital velocity of the ISS? How many revolutions around
the Earth does the ISS complete per day?

We can calculate the orbital velocity using equation 8. Note
that the orbital radius, r, is equal to Earth’s radius, RE, plus
the orbital altitude, h.

v =

√
µ

r
=

√
µ

RE + h
(1.1)

Let’s plug in some numbers. The gravitational parameter for
Earth is 3.986 × 1014 m3/s2 and the Earth’s equatorial radius is
6378 km.

v =

√
3.986× 1014 m3/s2

6378km + 180km

= 7.8 km/s

(1.2)

Wow, that’s fast!

To figure out how many revolutions the ISS completes per day,
we need to calculate the time it takes to complete one revo-
lution. We know the velocity of the ISS, so if we can get the
distance traveled during one revolution, we can calculate the
time for one revolution. The orbit is a circle of radius r, and
the circumference of the orbit is 2πr. Therefore, the distance
traveled during one revolution is 2πr. Now we can calculate
the orbital period, T:

T =
2πr

v

=
2π(6378km + 180km)

7.67 km/s

= 5280 s

= 1.46 hours

(1.3)

We can divide the time in one day by the orbital period to get
the number of revolutions per day. The result is 16.3 revolu-
tions per day. This means that astronauts on board the ISS see
approximately 16 sunrises and 16 sunsets per day!
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MOTION OF SOLAR SYSTEM BODIES

Figure 7: Comets travel on highly
elliptical orbits that bring them very
close to the Sun at one end and to the
outer reaches of the Solar System on the
other end.

Circular orbits are a good approximation for the orbits of most satel-
lites and even many planets. In actuality, the planets orbit the Sun
in slight ellipses, not circles. Comets, in particular, orbit the Sun in
highly elliptical orbits. Elliptical orbits are also used to change the
orbit of a spacecraft, which we will learn about next lecture. In this
section, we’ll learn about the motion of Solar System bodies, which
can be succinctly described by Kepler’s Laws.

Kepler’s Laws, listed below, concisely describe the motion of Solar
System planets around the Sun. These laws also apply to planets
orbiting other stars.

Kepler’s Laws

1. All planets move in elliptical orbits, with the Sun at one focus.

2. A line that connects a planet to the Sun sweeps out equal areas
in equal times.

3. The square of the period of any planet’s orbit is proportional to
the cube of the semi-major axis of its orbit.

A1A2

1

2

4

3

Figure 8: An illustration of Kepler’s
Second Law, which is best described
using an animation - check out this
YouTube video!

The first law states that all planets move in elliptical orbits around
the Sun. We’ll learn how to mathematically describe elliptical orbits
later on in this lecture.

The second law states that a line connecting the Sun to a planet
sweeps out equal areas in equal times, illustrated by Figure 8. The
Sun is shown as a large black dot located at the rightmost foci of
the ellipse. The planet is the small black dot that travels along the
perimeter of the ellipse. Let’s consider the area A1 that is swept out

https://spaceplace.nasa.gov/meteor-shower/en/
https://www.youtube.com/watch?v=qd3dIGJqRDU
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as the planet moves from location 1 to location 2. We will assume
that it takes ∆t seconds for the planet to move from location 1 to 2.
Figure 8 also shows another area, A2, that is swept out by the planet
as it travels from location 3 to location 4. If we assume that it takes
∆t seconds for the planet to move from location 3 to 4, then we can
conclude that A1 = A2 by Kepler’s Second Law.

What does this tell us about the planet’s velocity as it orbits the star?
Kepler’s Second Law is really a statement about the conservation of
angular momentum, which tells us how the velocity of the planet
changes along its orbit. Consider the planet’s motion from location
1 to 2 in comparison to its motion from location 3 to 4. The planet
travels a longer distance along its path as it sweeps out A1 than that
when it sweeps out A2. Let’s assume that the planet sweeps out A1

and A2 in the same amount of time, ∆t. Velocity is distance divided
by time, so as the planet sweeps out A1, it travels a long distance
over a period ∆t. In contrast, as the planet sweeps out A2, it travels a
short distance over the same period of time ∆t. Therefore the velocity
of the planet as it sweeps out A1 is much higher than that when it
sweeps out A2. Kepler’s Second Law tells us that the planet travels fastest
when it is closest to the Sun and slowest when it is farthest from the Sun.

Finally, Kepler’s Third Law tells us about the relationship between
the period of a planet’s orbit to the size of the orbit. We will see how
express this law mathematically during the lab!

ELLIPTICAL ORBIT PARAMETERS

In this section, we’ll learn how to mathematically describe elliptical
orbits. Figure 9 shows a planet of mass m traveling along an elliptical
path around the Sun. Notice that the ellipse has two foci: one on the
left, which is empty, and one on the right, which is the location of the
Sun. The total width of the ellipse is 2a, where a is the semi-major axis.
The total height of the ellipse is 2b, where b is the semi-minor axis. The
eccentricity, e, describes how "ellipitical" an ellipse is:

e =

√
1− b2

a2 (9)

The minimum possible value of eccentricity is zero. In this case,
a = b, which means we have a circle. The maximum possible value
of eccentricity is 1. In this case, a � b, which means we have an
infinitely wide, infinitely short ellipse. Most of the Solar System
planets follow elliptical orbits with e < 0.1, which means that their
orbits are approximately circular.
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Figure 9: Diagram of an elliptical orbit.

Now let’s consider the motion of the planet. Notice that the x-y co-
ordinate system is centered at the location of the Sun. We can draw
a position vector,~r, from the Sun to the planet, as shown in Figure 9.
The angle between the positive x-axis and the planet’s position vector
is called the argument of perigee and is denoted by θ. Finally, we can
draw the planet’s velocity vector, ~v, which is always tangent to the
curve of the ellipse.

Notice that the position vector and velocity vector are not perpen-
dicular to each other like they were for circular orbits. In fact, the
relative angle between the position and velocity vectors changes as
the planet orbits the Sun. There are only two places where the posi-
tion vector and velocity vector are perpendicular: perigee and apogee.

definition 3.3 The position of the planet when it is closest
to the Sun is called perigee. When the argument of perigee is
zero, the planet is at perigee.

definition 3.4 The position of the planet when it is farthest
from the Sun is called apogee. When the argument of perigee is
180
◦, the planet is at apogee.

Figures 10 and 11 show a planet at perigee and apogee, respectively.
Notice from Figures 10 and 11 that rp + ra = 2a.
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Figure 10: Perigee of an elliptical orbit.
The distance between the planet and
the Sun is rp, which is called the perigee
radius. The velocity is ~vp, which is
called the perigee velocity
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Figure 11: Apogee of an elliptical orbit.
The distance between the planet and
the Sun is ra, which is called the apogee
radius. The velocity is ~va, which is
called the apogee velocity.

ELLIPTICAL ORBIT DYNAMICS

Now that we have specified the parameters of elliptical orbits, we can
consider the motion of the planets according to Kepler’s Second and
Third Laws. Recall that Kepler’s Second Law is a statement about the
conservation of angular momentum of the system. We can write the
angular momentum, ~L, of the planet as:

~L = m~r×~v (10)
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When considering planetary orbits, we usually consider the specific
angular momentum:

~h =~r×~v (11)

The specific angular momentum, h, is the angular momentum di-
vided by the mass of the planet. If we assume that there are no
external forces acting upon the Sun and planet, then the angular
momentum must be constant over time:

d~h
dt

= 0 (12)

This means that both the magnitude and direction of the specific an-
gular momentum are constant. The magnitude of the specific angular
momentum is:

h = rv⊥ (13)

where v⊥ is the velocity component that is perpendicular to the ra-
dius vector at some point along the orbit. For elliptical orbits, the
radius and velocity vectors are perpendicular to each other at two
locations: perigee and apogee. Since the angular momentum is con-
stant, we can write that:

h = rpvp = rava (14)

where rp is the perigee radius, vp is the velocity at perigee, ra is the
apogee radius, and va is the velocity at apogee.

Kepler’s Equation

By applying the conservation of angular momentum, Newton’s Sec-
ond Law, and geometrical properties of ellipses, we can derive an
equation that describes the shape of an elliptical orbit. The derivation
is lengthy and involves quite a bit of vector mathematics, so we won’t
go into the details here. The result is called Kepler’s Equation, which
gives the orbital radius, r, as a function of the argument of perigee, θ:

r =
h2/µ

1 + e cos θ
(15)

Notice that h, e, and µ are constant for a given ellipse. This equa-
tion provides r(θ), which describes the shape on an ellipse in polar
coordinates.
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Energy of Orbits

The total energy, E, of a spacecraft orbiting a planet is given by the
sum of its kinetic energy and gravitational potential energy:

E =
1
2

mv2 − µm
r

(16)

When considering orbits, we typically use the specific energy, E , which
is the total energy divided by the mass of the spacecraft:

E =
1
2

v2 − µ

r
(17)

In the lab, we’ll use many of the equations from this section to an-
alyze the dynamics of elliptical orbits in greater detail. We’ll derive
some expressions that are critical for space missions, such as sending
a spacecraft to Mars!
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