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I N T R O D U C T I O N T O R O C K E T P R O P U L S I O N

L4: Orbit Transfers and Solar System Exploration

Figure 1: The Mars 2020 Rover, named
Perseverance, is on it’s way to Mars! It
launched from Earth’s surface on July
30, 2020 and will land on Mars’ surface
on February 18, 2021. Click here to
track its orbital path on NASA JPL’s
webpage.

How do we send a spacecraft from Earth to Mars?
In this lecture, we will learn how rockets are used to change the orbits
of spacecraft. A popular technique is called a Hohmann transfer, which
uses an elliptical transfer orbit that connects one circular orbit to another.
We’ll learn how to calculate the change in velocity, and thus propellant
required, to complete a Hohmann transfer. We’ll also calculate the ve-
locity required to escape the gravitational field of a massive body, such
as the Earth. Spacecraft orbiting the Earth need to escape Earth’s gravi-
tational influence before they can travel on to Mars and beyond! Finally,
we’ll learn about other types of orbit transfers on a conceptual level.

Learning Goals:

1. Describe how Hohmann transfers work. Draw a diagram of
the initial orbit, transfer orbit, and final orbit.

2. Calculate the change in velocity and propellant required to
complete a Hohmann transfer.

3. Calculate the change in velocity required to escape the gravi-
tational influence of a massive body.

4. Conceptually describe other types of orbit transfers.

ORBIT TRANSFERS

Hohmann Transfers

Let’s consider the situation in which a spacecraft is in a circular orbit
around Earth with a radius r1. The spacecraft needs to get to a higher
altitude circular orbit of radius r2. How do we move the spacecraft
from one orbit to the other? One of the most common ways to change
circular orbits is with a Hohmann transfer. The path of a Hohmann
transfer orbit is illustrated by the black curve in Figure 2.

Notice how the black curve is half of an ellipse that connects the two
circular orbits. The perigee of the ellipse has a radius r1, which is
the radius of the initial circular orbit. The apogee of the ellipse has
a radius r2, which is the radius of the final circular orbit. To get onto
the transfer orbit, the spacecraft must fire its rockets and accelerate
by a change in velocity ∆v1. To get off the transfer orbit and enter
the final circular orbit, the spacecraft must fire its rockets again and
accelerate by a change in velocity ∆v2.

https://mars.nasa.gov/mars2020/
https://mars.nasa.gov/mars2020/timeline/cruise/
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Figure 2: Hohmann transfer diagram. A
spacecraft is initially in a circular orbit
of radius r1 around a massive body,
denoted by the large black dot. The
spacecraft uses a Hohmann transfer to
reach a larger circular orbit around the
massive body, which has a radius r2.

The time it takes to complete a velocity change needs to be very short
compared to the period of the orbit. A quick velocity change is called
an impulse maneuver. Impulsive maneuvers allow us to assume that
the spacecraft changes from one distinct orbit to another instanta-
neously. For example, in one moment the spacecraft is on its circular
orbit of radius r1. A moment later, the spacecraft is on its elliptical
transfer orbit.

definition 4.1 An impulsive maneuver consists of a short-
duration firing of a spacecraft’s rocket propulsion system.
Typically an impulsive maneuver delivers high thrust over
a short period of time, perhaps only a few minutes, which
results in a large change in velocity.

To simplify the analysis of a Hohmann transfer, we need to assume
that the spacecraft doesn’t have time to move very far while the rock-
ets are firing. During an impulsive maneuver, we can say that the
position of the spacecraft is approximately constant and only the
velocity changes.

When a spacecraft is located at some radius from Earth’s center, it
must travel at a particular velocity to be in circular orbit. This circular
orbit velocity, vcirc, is given by the following equation:

vcirc =

√
µ

r
(1)
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Before the first impulsive maneuver in our Hohmann transfer exam-
ple, the spacecraft is traveling at the following velocity, v1:

vcirc,1 =

√
µ

r1
(2)

After the impulsive maneuver, the spacecraft has a new velocity:

v1 = vcirc,1 + ∆v1 (3)

We assume that the spacecraft is in the same position it was in before
the rockets were fired, so that means it’s still located at a distance r1

from Earth’s center. Now, the spacecraft is no longer be in a circular
orbit because its position and velocity no longer satisfy equation 1.
What type of orbit is the spacecraft in now? Well, assuming ∆v1 isn’t
too large, it will be in an ellptical orbit with a perigee radius rp = r1.

What is the apogee radius of this elliptical transfer orbit? Let’s solve
for ra in terms of v1. We can approach this problem by thinking
about the energy of the spacecraft. Remember from the last lab that
the specific energy, E , of a spacecraft on an elliptical or circular orbit
is given by the following expression:

E =
1
2

v2 − µ

r
= − µ

2a
(4)

where a is the semi-major axis of the ellipse, or radius of the circle.
We can solve for a in terms of r and v:

a =
1

2
r −

v2

µ

(5)

Right after the first impulsive burn, r = r1 and v = v1. Therefore the
semi-major axis of the transfer ellipse is:

a =
1

2
r1
− v1

2

µ

(6)

We use the perigee radius and the semi-major axis to find the apogee
radius:

ra = 2a− rp

=
2

2
r1
− v1

2

µ

− r1
(7)

For a given initial radius, r1, and a post-impulsive-maneuver veloc-
ity, v1, we can determine the apogee radius, ra of the spacecraft’s
elliptical transfer orbit.
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For a Hohmann transfer, we know that the apogee radius of the
transfer orbit should be the radius of the final circular orbit, r2. What
we don’t know is how big ∆v1 needs to be to make the elliptical
transfer orbit just the right size. We can solve for v1 given that rp = r2

in equation 7:

v1 =

√√√√ µ

r1

(
2 r2

r1 + r2

)
(8)

Finally we can solve for ∆v1:

∆v1 = v1 − vcirc,1

=

√√√√ µ

r1

(
2 r2

r1 + r2

)
−

√√√√ µ

r1

(9)

Given an initial circular orbit radius and final circular orbit radius,
we can use equation 9 to solve for the change in velocity required to
enter the elliptical transfer orbit.

How do we get out of the transfer orbit? Without a second impulsive
maneuver, the spacecraft will travel in an ellipse around the Earth
over and over again. The spacecraft needs more kinetic energy to
travel in a circle with radius r2. Let’s compare the the velocity of the
final circular orbit with the velocity of the spacecraft at the apogee
of its elliptical transfer orbit. The orbital velocity of the final circular
orbit is:

vcirc,2 =

√
µ

r2
(10) Figure 3: Wait, there’s more? All these

equations are making me hungry...

The apogee velocity of the elliptical transfer orbit, v2 is:

v2 =

√√√√ µ

r2

(
2 r1

r1 + r2

)
(11)

Note that you can solve for this velocity using equation 6 and the
relationship ra = 2a− rp.

We can calculate the change in velocity required for the second im-
pulsive burn by subtracting the apogee velocity from the final circu-
lar velocity:

∆v2 = v2 − vcirc,2

=

√√√√ µ

r2
−

√√√√ µ

r2

(
2 r1

r1 + r2

) (12)
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Now we have ∆v1 and ∆v2 in terms of the initial circular orbit radius,
r1, and the final circular orbit radius, r2. The total change in velocity
required to complete a Hohmann transfer is:

∆v = ∆v1 + ∆v2

=

√
µ

r1

(√( 2 r2

r1 + r2

)
− 1

)
+

√
µ

r2

(
1−

√( 2 r1

r1 + r2

)) (13)

Example 1:

Let’s do an example! A satellite is dropped off in Low-Earth
Orbit (LEO) by a launch vehicle. The initial altitude of the
satellite is 180 km. Assume that it is in a circular orbit. The
satellite needs to get to Geostationary Orbit (GEO), which has
an altitude of 35,786 km. Calculate the total "delta-v" required
for the satellite to change orbits using a Hohmann transfer.

We can start by calculating r1 and r2:

r1 = 6371 km + 180 km

= 6551 km
(1.1)

r2 = 6371 km + 35, 786 km

= 42, 157 km
(1.2)

We can calculate ∆v1 using equation 9. Let’s start by comput-
ing the velocity of the inital circular orbit using equation 2.
Remember that the gravitational parameter for the Earth is
µ = 398, 600 km3/s2.

vcirc, 1 =

√
µ

r1

=

√
398, 600 km3

s2

6551 km

= 7, 800 m/s

(1.3)
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Next, we can compute the perigee velocity of the elliptical
transfer orbit using equation 8.

v1 =

√√√√ µ

r1

(
2 r2

r1 + r2

)

=

√√√√ 2(398, 600 km3

s2 )(42, 157 km)

(6551 km)(6551 km + 42, 157 km)

= 10, 263 m/s

(1.4)

The change in velocity required for the first impulsive burn is:

∆v1 = v1 − vcirc, 1

= 10, 263 m/s− 7, 800 m/s

= 2, 463 m/s

(1.5)

Now let’s calculate the change in velocity for the second im-
pulsive burn. We can start by calculating the apogee velocity
of the elliptical transfer orbit:

v2 =

√√√√ µ

r2

(
2 r1

r1 + r2

)

=

√√√√ 2(398, 600 km3

s2 )(6551 km)

(42, 157 km)(6551 km + 42, 157 km)

= 1, 595 m/s

(1.6)

The velocity for the final circular orbit is:

vcirc, 2 =

√
µ

r2

=

√
398, 600 km3/s2

42, 157 km

= 3, 075 m/s

(1.7)
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The change in velocity for the second impulsive burn is:

∆v2 = vcirc, 2 − v2

= 3, 075 m/s− 1, 595 m/s

= 1, 480 m/s

(1.8)

Finally, the total required change in velocity of the satellite is:

∆v = ∆v1 + ∆v2

= 2, 463 m/s + 1, 480 m/s

= 3, 943 m/s

(1.9)

That’s a sizeable change in velocity! It’s nearly 50% of the
change in velocity required to launch from the surface of the
Earth to LEO, which we will investigate next lecture.

Example 2:

Let’s calculate the propellant fraction required to complete the
Hohmann transfer from example 1. Assume that the space-
craft has rocketsw with a specific impulse of 250 s.

Let’s use the Ideal Rocket Equation to solve for the propellant
mass fraction:

mp

m0
= 1− exp

(
− ∆v

g Isp

)
= 1− exp

(
− 3, 943 m/s

(9.81 m/s2)(250 s)

)
= 0.80

(2.1)

The propellant fraction required to transfer from LEO to GEO
is 80%. That’s a lot of propellant!
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Free Return Trajectories

Hohmann transfers can be used to raise and lower the orbits of satel-
lites orbiting the Earth. They can also be used to travel from Earth’s
circular orbit around the Sun to Mars’ circular orbit around the Sun.
Can a Hohmann transfer be used to get to the Moon? Imagine that a
spaceship initially orbits the Earth in a circle with radius r1. We know
that the Moon orbits the Earth in a circle as well, so why not set r2

to the distance between the Earth and Moon? This is possible, but it
requires a huge change in velocity. Is there a better way?

So far we have only considered what is called the "two-body problem."
We have been looking at the orbits of a tiny spacecraft around a
massive central body, such as the Earth. But what about the Moon?
The Moon is massive enough to exert its own gravitational forces on
a spacecraft that gets close enough. When spacecraft closely orbit the
Earth, we can ignore the effect of the Moon. But when we are trying
to go to the Moon itself, we need to consider the effect of its gravity
too. This results in what is called the "three-body problem." The three
bodies are the spacecraft, the Earth, and the Moon.

The three-body problem is significantly harder to solve. In fact, the
trajectory of a spacecraft in the presence of two massive bodies can’t
be solved for analytically! That means we can’t use pen and paper
to write down some nice and neat equations like we did for the two-
body problem. To solve the three-body problem, we need numerical
methods and computer programs. Luckily, lots of people have been
studying the three-body problem for a long time, so we can just take
a look at the results of their hard work.

Closed orbits? If a spacecraft has
enough energy to escape the gravity
of the central body, its orbital path
can be parabolic or hyperbolic. These
trajectories are called open orbits.

With the two-body problem, the possible closed orbits a spacecraft
can have are either circular or elliptical. With the three-body problem,
there are even more possible closed orbits and some have surpis-
ing shapes! This is because the spacecraft can orbit the Earth, the
Moon, or both. One particular orbit is called the "free return trajec-
tory", which makes a "figure 8" shape between the Earth and Moon.

Figure 4 shows the lunar free-return trajectory the Apollo astronauts
took to the Moon. The spacecraft starts in the circular "parking orbit"
around the Earth. Then, the rockets are fired to complete the "translu-
nar injection" burn, which is an impulsive maneuver. The spacecraft
coasts along the "figure 8" shape until it reaches the Moon. When the
spacecraft arrives at the Moon, the rockets are burned again to slow
the spacecraft down and enter a closed orbit around the Moon, which
is not shown. When its time to go back to Earth, the rockets are fired
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to accelerate the spacecraft back into the free-return trajectory. The
spacecraft coasts along the "figure 8" shape until it reaches the Earth.
From there the rockets are fired once again to ensure a safe re-rentry
into Earth’s atmosphere.

Figure 4: The lunar free return trajec-
tory that the Apollo astronauts took to
the Moon. Note that the Moon moves
along its orbit around the Earth as the
spacecraft approaches. The translunar
injection burn must be timed just right
so that the Moon is in the right place
when the spacecraft arrives!

SOLAR SYSTEM EXPLORATION

To explore the Solar System, spacecraft first need to escape Earth’s
gravity. Once far enough from Earth, spacecraft can fire their rockets
to enter a transfer orbit to another planet!

Earth Escape

To escape Earth’s gravitational influence, the kinetic energy of a
spacecraft must equal its gravitational potential energy. In this situa-
tion, the total energy of the spacecraft is zero. Recall that spacecraft
traveling along bound orbits, such as circular or elliptical orbits, have
negative energy. This is due to the fact that they are “trapped” in the
Earth’s gravitational potential well.

The velocity required to escape the gravitational influence of a mas-
sive body can be found by setting the specific energy to zero:

E =
1
2

v2 − µ

r

0 =
1
2

vesc
2 − µ

r

(14)

The escape velocity can be expressed as:

vesc =

√
2µ

r
(15)

This means that a spacecraft orbiting a planet at a distance r will
need a velocity equal to vesc to escape the gravity of the planet.
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Orbit Insertion*

This section is optional!
Imagine a spacecraft is traveling along a Hohmann transfer orbit
to Mars. It arrives at Mars’ circular orbit around the Sun and is ap-
proaching the planet. What is going to happen? The spacecraft is
actually traveling too fast to enter a closed orbit around Mars be-
cause its velocity exceeds Mars’ escape velocity. As the spacecraft ap-
proaches the planet, it must turn around and fire its rockets against
the direction of its motion in order to slow down. This is called an
orbit insertion burn. Figure 5 shows a diagram of an orbit insertion
burn for a spacecraft approaching Mars.

Insertion Burn

Transfer Orbit

Mars Capture Orbit

Figure 5: Mars orbit insertion. The
spacecraft approaches Mars on its
transfer orbit. At a point close to the
planet, the spacecraft completes an
insertion burn,. The burn slows the
spacecraft down so that it can enter the
Mars capture orbit, which is an ellipse.

Fly-By Maneuvers*

This section is optional!
Spacecraft need a lot of "delta-v" to explore the outer Solar System.
For example, a Hohmann transfer to Jupiter requires 14.4 km/s!
This means that a spacecraft needs to carry a significant amount of
propellant, which leaves less mass for useful scientific instruments. Is
there a better way to get to the outer planets without using so much
propellant?

Yes, there are better ways! One method uses "gravity fly-by" maneu-
vers. This is when a spacecraft closely approaches a planet, completes
a partial orbit, and flies off into space towards another planet. It’s
sometimes called a "gravity sling-shot" because the spacecraft gains
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speed as a result of the maneuver. As the spacecraft approaches the
planet, it accelerates because the planet exerts strong gravitational
forces on the spacecraft. The spacecraft moves faster than the escape
velocity of the planet, so it only completes a partial orbit before flying
off into space. The partial orbit changes the direction of the space-
craft trajectory, so the spacecraft can leave the planet with higher
velocity, heading in a direction towards its desired destination. Check
out this YouTube video that shows a cool demo of gravity fly-bys!

Figure 6: Saturn photo, captured by
Voyager 2.

Figure 7: Neptune photo, captured by
Voyager 2.

Gravity fly-bys were used extensively for the Voyager missions in
the 1970s. At that time, scientists realized that a special alignment
of the planets was about to take place. With such an alignment, they
would be able to use multiple gravity fly-bys to explore several of
the outer planets. For example, Voyager 2 first visited Jupiter and
used a fly-by to continue on to Saturn. It flew by Saturn, took lots
of cool pictures, and continued on to Uranus. It flew by Uranus so
that it could reach Neptune. Now Voyager 2 is exploring the outer
reaches of the Solar System. Check out this YouTube video that
shows Voyager 2’s trajectory through the Solar System.

https://youtu.be/-CqBP-CtM0c
https://voyager.jpl.nasa.gov/galleries/images-voyager-took/saturn/
https://voyager.jpl.nasa.gov/galleries/images-voyager-took/neptune/
https://youtu.be/l8TA7BU2Bvo
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