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I N T R O D U C T I O N T O R O C K E T P R O P U L S I O N

L5: Launch Trajectory Analysis

How do we predict the path of a launch vehicle?
In this lecture, we will learn how to predict the trajectory of a launch ve-
hicle as it ascends through Earth’s atmosphere! We’ll start by discussing
the change in velocity required for launch and why the choice of launch
location matters. Then we will define the forces acting on the launch ve-
hicle and write the equations of motion. We’ll learn that these equations
of motion can’t be solved by hand, which is why we need computers!
We’ll learn how to rewrite the equations of motion using Euler’s method
so we can numerically integrate the trajectory from launch pad to orbit.
In the lab, we’ll write some programs to calculate launch trajectories!

Figure 1: The Space Shuttle lifting off
the launch pad.

Learning Goals:

1. Explain why launch location is important and calculate the
delta-v savings for different latitudes.

2. Mathematically describe the forces acting on a launch vehicle.
Draw a diagram of a launch vehicle with the forces and coor-
dinate system labeled.

3. Write the equations of motion for a launch vehicle.

4. Solve for the launch vehicle trajectory using Euler’s method of
numerical integration.

LAUNCH TO ORBIT

We spent the last several lectures learning about orbits and orbit
transfers. In this lecture, we’ll investigate how satellites and space-
craft are launched into orbit. We need a launch vehicle to send a satel-
lite into orbit around the Earth. A launch vehicle is typically large,
weighing approximately one million kilograms, and is propelled by
chemical rockets. Approximately 90% of the mass of a launch vehicle
is chemical propellant.

The function of a launch vehicle is to bring payload, such as a satel-
lite, to the desired orbital altitude with the appropriate orbital ve-
locity. Many satellites are delivered by launch vehicles to Low Earth
Orbit (LEO), which ranges from 100 km to 1000 km above Earth’s
surface. For example, let’s assume that a satellite needs to be deliv-
ered to a circular orbit with an altitude of 200 km. Using the equation
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for the velocity of a circular orbit, we can find that the velocity of the
satellite needs to be 7.78 km/s. The launch vehicle must bring the
satellite to a point 200 km in altitude, traveling parallel to Earth’s
surface at a speed of 7.78 km/s.

This is a challenging task! Launch vehicles must precisely deliver the
correct change in velocity to the payload to place it in the correct or-
bit. Notice that the orbital velocity at a 200 km altitude is quite high -
it’s almost 8000 m/s! Remember that the larger the change in veloc-
ity, the more propellant is required to deliver that change in velocity.
Launch vehicles use chemical rockets, which provide approximately
200 s to 450 s of specific impulse. If we assume ∆v = 7780 m/s and
Isp = 400 s, then we can use the Ideal Rocket Equation to find that
more than 86% of the launch vehicle mass must be propellant.

Note that the ∆v used in this example
is just a rough estimate. We need to
account for the launch location, gravity
losses, and drag losses in order to
obtain an accurate estimate of the
propellant mass required.

Launch Location

The launch location needs to be specified in order to determine the
change in velocity the launch vehicle must deliver. Remember that
on Earth’s surface, we are moving relative to the center of the Earth!
We don’t notice this motion, but it’s there and it can help give launch
vehicles a boost into space. The Earth rotates from west-to-east along
its axis, which connects the north and south poles. It takes 24 hours
for the Earth to complete one revolution. With this information, we
can calculate the rotational velocity at any point on Earth’s surface.

~veqRE

Ω

Figure 2: Rotational velocity at the
equator. The velocity is perpendicular
to the radial direction and is parallel to
Earth’s surface.

Let’s first consider the rotational velocity at the equator. Figure 2

shows a diagram of the Earth with the rotational velocity of the equa-
tor, ~veq, labeled. The angular velocity of Earth’s rotation along its axis
is Ω, which is equal to 2π divided by the period of Earth’s rotation.
We can calculate the magnitude of the rotational velocity at the equa-
tor by dividing the distance traveled in one revolution by the time it
takes to complete a revolution. The distance traveled is the circum-
ference of the Earth at the equator, which is 2πRE. Therefore, the
magnitude of the rotational velocity at the equator is:

veq =
2πRE

T

=
2π (6378 km)

24 hours

= 464 m/s

(1)

The surface at the equator rotates at 464 m/s relative to the center of
the Earth. If we launch from the equator to the east, we can subtract
464 m/s from the delta-v required of the launch vehicle!
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What happens at other latitudes? We can use a similar equation as
before; we just need to calculate the distance traveled a bit differently.
Figure 3 shows the rotational velocity at the equator and at a spec-
ified latitude, Λ. To compute the rotational velocity at any latitude,
we need to determine the distance traveled during one revolution at
that latitude. Notice in Figure 3 that the distance traveled during one
revolution gets smaller as the latitude increases. If one were to stand
at the north pole, for example, the distance traveled would be zero!

~veqRE

Ω

Λ

R ~v

Figure 3: Rotational velocity at a spec-
ified latitude. The distance traveled in
one revolution at higher latitudes is
smaller than that at the equator. There-
fore, the rotational velocity at higher
latitudes is less than that at the equator.

The distance traveled during one revolution is given by 2πR, where
R is the distance between the Earth’s surface and Earth’s axis of
rotation. At a latitude of Λ, the distance between the surface and the
axis of rotation is RE cos Λ. Therefore, the rotational velocity, vr, at a
given latitude is:

vr =
2πR

T

=
2πRE cos Λ

T

= veq cos Λ

(2)
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Example 1:

Let’s consider Kennedy Space Center (KSC) in Cape
Canaveral, Florida as the launch location. The latitude of
KSC is 28.5◦. The rotational velocity at KSC is:

vr = veq cos Λ

= (464 m/s) cos 28.5◦

= 408 m/s

(1.1)

Therefore if we launch from KSC to the east, we can subtract
408 m/s from the required change in velocity from the launch
vehicle. It may not seem like much but saving 408 m/s can
create room for more payload!

Let’s recalculate the propellant mass percentage from our ear-
lier example. The change in velocity is now 7780 m/s minus
408 m/s, which is 7372 m/s. The launch vehicle must be 85%
propellant by mass, which is a 1% savings. This may seem
small, but it can translate to hundreds of kilograms of extra
payload depending on the launch vehicle mass.

FORCES ON A LAUNCH VEHICLE

To predict the trajectory of a launch vehicle, we need to model the
forces that act on the vehicle at all times. Figure 4 shows a diagram of
a rocket and the forces acting on it.

The forces acting on the launch vehicle are as follows:

1. Gravity. The force of gravity pulls the vehicle towards the center
of the Earth. It acts on a point on the launch vehicle called the
center of mass. The magnitude of the gravitational force is equal to
the weight of the vehicle, W:

W = mg (3)

where m is the vehicle mass, which is a function of time, and g is
the acceleration due to gravity, which is a function of altitude.

2. Thrust. The thrust force, T, from the rocket engines acts along
the axis of the launch vehicle, accelerating it forwards. The thrust
can change slightly over time, if needed, and can be directed at
different angles, usually within a few degrees of the axis of the
launch vehicle.



l5: launch trajectory analysis page 5

x

y

~T

~D

~v

~W

γ

θ

Figure 4: Forces on a launch vehicle.
The thrust force, T, is aligned with the
axis of the launch vehicle while the
drag force, D, is not. Instead, the drag
acts in opposition to the velocity of
the vehicle. The velocity vector is at an
angle γ from the horizontal, which is
called the flight path angle. The angle
between the axis of the vehicle and the
horizontal is denoted by θ.

3. Drag. The atmosphere exerts a frictional force on the launch ve-
hicle that acts opposite to the direction of motion, called drag.
We can calculate the magnitude of the drag force, D, using the
following expression:

D =
1
2

ρv2 A cD (4)

where ρ is the density of the atmosphere, v is the vehicle speed,
A is the cross-sectional area of the vehicle, and cD is the drag
coefficient.

The cross-sectional area is the area of the largest slice through the
vehicle that is perpendicular to the direction of motion of the ve-
hicle. For example, the cross-sectional area of a baseball of radius
r is πr2, which is the area of the largest circular slice through the
ball. Note that drag coefficients are determined experimentally
using wind-tunnel tests. They vary depending on the vehicle ge-
ometry, speed, and surface roughness, among other things.

The drag force increases with increasing vehicle speed and atmo-
spheric density. Fortunately, launch vehicles don’t move very fast
through the dense lower atmosphere. Launch vehicles reach their
highest speeds at high altitudes where the atmosphere is nearly
vacuum, so the drag force isn’t very strong.
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Now that we know the forces acting on the vehicle, we can determine
the sum of the forces. We’ll use the sum of the forces in the next
section when we calculate the launch vehicle trajectory. We will sum
the forces up in two directions:

1. Parallel direction. This direction is parallel to the flight path of the
vehicle, or in other words, the same direction as the velocity.

2. Perpendicular direction. This is the direction perpendicular to
the flight path of the vehicle, pointing approximately downward
towards the surface of the Earth.

For our analysis, we will assume that θ = γ. Note that this may not
be true for vehicles that experience torques which rotate the axis of
the vehicle relative to the velocity vector. The sum of the forces in the
parallel direction is:

∑ F‖ = T −W sin γ− D (5)

The sum of the forces in the perpendicular direction is:

∑ F⊥ = −W cos γ (6)

TRAJECTORY ANALYSIS

Equations of Motion

We can use Newton’s Second Law to solve for the trajectory of the
launch vehicle. Remember that Newton’s Second Law states that
the sum of the forces acting on a body is equal to the mass times the
acceleration of that body. We will write Newton’s Second Law for the
two directions of motion we considered in the last section.

The equation of motion in the parallel direction is:

∑ F‖ = ma‖ (7)

where a‖ is the acceleration in the parallel direction. The equation of
motion in the perpendicular direction is:

∑ F⊥ = ma⊥ (8)

where a⊥ is the acceleration in the perpendicular direction.

Notice that a‖ is parallel to the velocity vector, which means that it’s
the time rate of change of the speed:

a‖ =
dv
dt

(9)
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In contrast, a⊥ is perpendicular to the velocity vector and thus the
flight path of the vehicle. The perpendicular acceleration is a function
of the vehicle speed, altitude, flight path angle, and rate of change of
the flight path angle:

a⊥ =
v2

RE + h
cos γ− v

dγ

dt
(10)

where h is the altitude of the vehicle. This equation is used for mo-
tion along any curved path and is a generalization of the centripetal
acceleration, which is used for circular motion.

When a body follows a circular path, the flight path angle is always
zero since the position and velocity vectors are always perpendicular
to each other. Therefore, the rate of change of the flight path angle
is also zero. By plugging in γ = 0 and dγ/dt = 0 in equation 10,
we recover the expression for the centripetal acceleration: ac = v2/r,
where r = RE + h.

Finally, using the sums of the forces from the previous section, we
can write the two equations of motion as:

m
dv
dt

= T − 1
2

ρv2 AcD −mg sin γ (11)

m
( v2

RE + h
cos γ− v

dγ

dt

)
= −mg cos γ (12)

The equations of motion are even more complex since the air density
and the gravitational acceleration are both functions of the vehicle
altitude. Also, the mass of the vehicle is a function of time.

We can express the gravitational acceleration, g, as a function of
altitude, h, using the following expression:

g(h) = g0

(
RE

RE + h

)2

(13)

where g0 is the acceleration due to gravity on Earth’s surface.

The atmospheric density, ρ, as a function of altitude, h, can be mod-
eled using the following equation:

ρ(h) =
p0

T0

M

R

(
1− Lh

T0

) g0M
LR −1

(14)

where p0 is the atmospheric pressure at sea-level, T0 is the atmo-
spheric reference temperature at sea-level, M is the mean molecular
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mass of air, R is the ideal gas constant, and L is the temperature
lapse rate, which is how quickly the atmospheric temperature de-
creases with altitude. This model is valid up to an altitude of 40 km.

Finally, we can express the mass of the vehicle as a function of time
with the following equation:

m(t) = m0 − ṁt (15)

where m0 is the initial mass of the vehicle and ṁ is the mass flow rate
of the rockets. We’ll assume that the mass flow rate is constant.

Another complication that we haven’t yet considered is how to model
the drag force. The coefficient of drag depends on the vehicle speed
and generally cannot be described using an analytical expression.
Instead, the coefficient of drag needs to be looked up from a table.
So how are we supposed to integrate the equations of motion if one
of the variables needs to be looked up from a table?! Even if the
coefficient of drag was a constant value, we still wouldn’t be able to
solve the equations analytically because the variables v(t), γ(t), and
h(t) are interdependent. To solve these equations, we need to use a
different strategy, called numerical integration.

Numerical Integration

Numerical integration is an approach to solving differential equa-
tions that can’t be solved analytically. Instead of solving for an an-
alytical equation that describes the velocity of the launch vehicle as
a function of time, we can compute numerical values of the velocity
at discrete instants in time, starting from liftoff and ending when the
rockets finish burning. This gives us an array of time values and a
corresponding array of velocity values.

Numerical integration works by starting at some known initial con-
ditions and using that information to compute the conditions a split-
second later. For example, if we know the numerical values of the
vehicle position and velocity at the moment the launch begins, t = 0,
we can compute the numerical values of the forces acting on the ve-
hicle at that moment in time. We can divide the forces by the mass
of the vehicle to obtain the instantaneous accelerations. If we assume
that the vehicle accelerates for a short duration of time, ∆t, then we
can estimate the change in velocity of the vehicle. We can estimate
the change in position of the vehicle by using the current value of the
velocity, since the velocity is the time rate of change of the position.

We can add the change in velocity and change in position to the
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current values of the velocity and position, respectively. This yields
the velocity and position at a moment in time later, specifically at
t = ∆t. We can repeat this process by using the new position and
velocity to compute new values of the forces acting on the vehicle at
t = ∆t. Then, we can compute the change in velocity and change
in position at t = ∆t. From there, we can compute the position and
velocity a moment later, which is t = 2∆t. We can do this again and
again until we find that the vehicle reaches orbit.

This approach sounds tedious, and indeed it is. But it’s the only way
that we can determine the motion of a launch vehicle through Earth’s
atmosphere. The human computers at NASA, which we are reading
about in the novel Hidden Figures, used this approach too! Today, we
have the advantage of using laptops with considerable computing
power. In the 1950s, electronic computing was in its infancy, so the
human computers had to do all of the computations by hand. Later
on, electronic computers became more advanced, relatively speaking,
so the human computers were able to write programs to compute
trajectories. They became the first computer scientists at NASA!

Figure 5: The human computers at
NACA, later NASA, used Friden
calculators. These bulky machines
could do basic arithmetic, which was
cutting edge at the time.

Before we numerically analyze launch trajectories, let’s use numerical
integration to solve a simple equation:

dy
dt

= f (t) (16)

We want to find y(t). Normally we would solve the equation by
integrating the right-hand side:

y(t) =
∫

f (t) dt (17)

where f (t) can be thought of as the time rate of change of y. Let’s
assume that we can’t solve the integral analytically, so instead we
need to use numerical integration.

Assume that we can calculate the numerical value of f (ti), where
ti is a specific value of t. We can use f (ti) to calculate the value of
y at a later value of t. To do this, let’s increase the value of t by a
small amount, ∆t, such that the value of t at the next timestep is
ti+1 = ti + ∆t. Then, we can use Euler’s Method, which is a linear
approximation, to compute the change in y:

∆y ≈ f (ti) ∆t (18)

Now we can calculate the value of y at ti+1 by adding ∆y to y(ti):

y(ti+1) = y(ti) + ∆y

= y(ti) + f (ti) ∆t
(19)
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As long as we know the value of y and f at time ti, then we can
calculate the value of y at the next timestep, which is y(ti+1). This
process can continue on because now we can calculate f (ti+1) using
y(ti+1). Keeping ∆t the same, we can calculate a new value for ∆y
and compute y(ti+2):

y(ti+2) = y(ti+1) + ∆y

= y(ti+1) + f (ti+1) ∆t
(20)

We can repeat this process again and again as needed.

Numerical Integration of Rocket Trajectories

There are four variables that we need to keep track of while integrat-
ing the trajectory of a rocket: the mass m(t), the velocity v(t), the
flight path angle γ(t), and the altitude h(t). To use Euler’s Method,
we need to find the time rates of change of these four variables. This
means we need to define four equations to integrate! x

y

~W

Figure 6: Before the engines ignite, the
only force acting on the launch vehicle
is gravity. When the engines fire, they
produce a thrust force opposite in
direction of the vehicle weight, ~W.
Notice that the thrust of the rockets
must be greater than the initial weight
for the vehicle to lift off!

Let’s find the time rate of change of the velocity by rewriting the
equation of motion in the parallel direction:

dv
dt

=
1
m

(
T −mg sin γ− 1

2
ρv2 AcD

)
(21)

=
1
m ∑ F‖

= f‖(t)

where f‖(t) is the sum of the forces in the parallel direction divided
by the mass. Ultimately f‖ is a function of time since all the variables
it depends on also depend on time.

Now let’s find the time rate of change of the flight path angle by
rewriting the equation of motion in the perpendicular direction as:

dγ

dt
=
( v

RE + h
− g

v

)
cos γ (22)

= f⊥(t)

where f⊥(t) is the time rate of change of the flight path angle. We
can also conclude that f⊥ is a function of time since all the variables
it depends on also depend on time.

If we assume the mass flow rate of the rockets is constant, the time
rate of change of the vehicle mass is given by

dm
dt

= −ṁ (23)
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Finally, we need to find the time rate of change of the vehicle alti-
tude. We can relate the change in the distance traveled along the
flight path, ds, to the change in altitude, dh, using the triangle in
Figure 7. The time rate of change of the altitude is:

ds
dh

γ

Figure 7: The triangle shows the rela-
tionship between the change in flight
path distance, ds, flight path angle, γ,
and the change in altitude, dh.

dh
dt

=
ds
dt

sin γ

= v sin γ

(24)

where the time rate of change of the flight path distance, ds/dt, is
equal to the vehicle velocity. We found all four equations!

Now we can apply Euler’s method to equations 21-24 to numerically
integrate them over time. We’ll start at t = 0, when the launch ve-
hicle is on the launch pad. At t = 0, the speed of the vehicle is zero,
the flight path angle is approximately 90

◦, the mass is m0, and the
altitude is zero. We know enough information to calculate the initial
values of the four rates of change.

Given these initial conditions, we can increase the time by ∆t. Using
Euler’s method, we can calculate the numerical value of the veloc-
ity, flight path angle, mass, and altitude at the next timestep. The
following expressions show how Euler’s Method can be applied to
equations 21-24:

v(ti+1) = v(ti) + f‖(ti)∆t (25)

γ(ti+1) = γ(ti) + f⊥(ti)∆t (26)

m(ti+1) = m(ti)− ṁ ∆t (27)

h(ti+1) = h(ti) + v(ti) sin γ(ti) ∆t (28)

Once we have values for v, γ, m, and h at the next timestep, we can
calculate new values for the rates of change. Then we can apply Eu-
ler’s Method again and again to obtain the numerical values of v,
γ, m, and h at discrete instants in time. Solving for these quantities
at each timestep is a laborious process, which is why we use com-
puter programs. In the lab, we’ll apply Euler’s method to a simpler
problem. Then, for your final project, you’ll work on a program to
compute the trajectory of a launch vehicle using equations 25-28.
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