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I N T R O D U C T I O N T O R O C K E T P R O P U L S I O N

L8: Chemical Rocket Nozzles

Figure 1: Operational liquid bi-
propellant rocket engine on a test
stand. The converging-diverging nozzle
accelerates the hot combustion gases to
supersonic speeds. We’ll learn about
why rocket nozzles are shaped this way
later in the lecture!

How do chemical rocket nozzles accelerate the exhaust?
In this lecture, we will investigate how rocket nozzles accelerate exhaust
gases to high velocities. First we’ll consider a classic problem: water
flowing through a garden hose. Then we’ll consider gas flowing through
a rocket nozzle. We’ll find that the exhaust gases are accelerated to su-
personic speeds! Finally, we’ll review some equations that will help us
design rocket nozzles and calculate the exhaust velocity.

Learning Goals:

1. Explain what the conservation of mass is and how it pertains
to fluid flow through channels.

2. Explain why converging-diverging rocket nozzles are shaped
the way they are. Draw a nozzle and label where the flow is
subsonic, sonic, and supersonic.

3. Calculate the nozzle area ratio given a pressure ratio.

4. Calculate the exhaust velocity of a chemical rocket engine.

GARDEN HOSE PROBLEM

We know from earlier lectures that fuel and oxidizer are mixed to-
gether in the combustion chamber of a bi-propellant chemical rocket
engine. The mixture combusts, producing high temperature, high
pressure gas. At this point, the combustion gases move slowly along
the axis of the rocket engine towards the exit. To increase the thrust
and specific impulse, we need to accelerate the gas to high velocities
using a nozzle.

Let’s start at the beginning. After the reaction is completed, the
gaseous combustion products have low kinetic energy. For the pur-
poses of our analysis, we can assume that the initial velocity of the
gas is zero. However, the gas is at high temperature and pressure,
which means that the gas has high potential energy. Remember that
potential energy is essentially the ability to do work. To accelerate the
gas, we need to convert the potential energy to kinetic energy. In a
rocket engine, a nozzle is used to accomplish this task.

https://www.nasa.gov/exploration/systems/sls/proven-engine-packs-big-in-space-punch-for-nasa-s-sls-rocket.html
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Before we learn about rocket nozzles, let’s start by thinking about
garden hoses. Have you ever played with a garden hose outside?
When you open the faucet, the water gushes out the end of the hose.
If you hold the hose horizontally, the water travels a short distance,
maybe a few feet, before hitting the ground. It probably doesn’t
travel far enough to spray your friend who is standing 10 feet away.

Figure 2: Water flowing slowly out of a
garden hose.

Figure 3: Water flowing quickly out of
a garden hose. You can use your thumb
to cover part of the exit area of a garden
hose, which forces the water out at high
velocity.

So what do you do to spray your friend? You probably cover part
of the hose opening with your thumb. Then, all of the sudden, the
water comes out of the hose at a much faster speed! A faster stream
of water travels a much farther distance before hitting the ground - so
you successfully spray your friend with water!

Conservation of Mass

Why does covering part of the end of a garden hose speed up the
water spray? Let’s introduce a key concept: The Conservation of Mass.

definition 8.1 The Conservation of Mass states that mass
is neither created nor destroyed within a closed system.

Let’s consider how the conservation of mass pertains to the garden
hose problem. We know that when we open the faucet, water flows
into the hose at a constant rate. This means that the mass of water
entering the hose per unit time is constant. We will call the mass flow
rate of water going into the hose ṁin. We also know that water comes
out the end of the hose. Let’s call the mass flow rate of water exiting
the hose ṁout.

Assuming that the hose isn’t leaky, we can say that no water leaves
the hose as it travels to the hose exit. We’ll also assume that no water
is added anywhere along the length of the hose. Therefore, the mass
flow rate of water exiting the hose must equal the mass flow rate of
water entering the hose. We can state the conservation of mass as:

ṁin = ṁout (1)

This is a critical step in understanding why changing the area of the
hose exit changes the speed of the water.

We need to find the relationship between the mass flow rate, the
water speed, and the cross-sectional area of the hose. Consider the
diagram in Figure 4, which shows an infinitesimally thin slice of the
garden hose. Let’s calculate the mass of water in that slice of hose,
∆m. Assuming that the cross-sectional area, A, is constant, we can
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say that the mass is the density of the water times the volume of the
slice of hose:

A

u

∆x
Figure 4: Slice of a garden hose. The
length of the hose is ∆x, the cross-
sectional area of the hose is A, and the
velocity of the water is u.

∆m = ρV

= ρ ∆x A
(2)

where ρ is the density of the water and V is the volume of the slice.
The volume of the slice is the length of the slice, ∆x, times the cross-
sectional area of the hose, A.

What is the mass flow rate of water through this section of hose? We
can divide equation 2 by a small increment of time, ∆t:

∆m
∆t

= ρA
∆x
∆t

(3)

Right away we can recognize ∆m/∆t as the mass flow rate, ṁ. What
about ∆x/∆t? This is the velocity of the water, u, as it flows through
the slice of hose. We can write equation 3 as:

ṁ = ρuA (4)

We have found that the mass flow rate of fluid through a channel is
given by the product of the fluid density, the fluid velocity, and the
area of the channel.

Now we can apply equation 4 to our garden hose problem. We can
express the conservation of mass as:

ṁin = ṁout

ρin uin Ain = ρout uout Aout

(5)

Let’s assume that the density of the water remains constant, which
means that ρin = ρout. Since the density cancels out, we can write
equation 5 as:

uin Ain = uout Aout (6)

The velocity of the water times the cross-sectional area of the hose
must remain constant throughout the length of the hose.

Let’s consider what happens when you cover the exit of the hose.
Assume that your thumb covers half of the hose exit area. This means
that Aout =

1
2 Ain. We can substitute this relationship into equation 6

and solve for the velocity:

uout = 2uin (7)

By covering half of the hose exit, the water is forced out the hose at
twice the speed! In general, as the hose area decreases, the water
velocity increases.
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CONVERGING-DIVERGING ROCKET NOZZLES

Compressible Flow

What does this have to do with rocket engines? Well, the same prin-
ciple works for a gas. As the flow area decreases, the speed of the gas
increases. This is why the diameter of the nozzle gets smaller down-
stream of the combustion chamber. As the nozzle gets narrower, the
gas speed increases significantly. However, we can’t make the flow
area infinitely small! At a certain point, making the nozzle smaller
actually slows down the gas. This is the opposite of what we would
expect! How can this be?

We made a critical assumption in the garden hose problem. We as-
sumed that the density of the fluid is constant. However, this is not a
good assumption for gases, which can be compressed or expanded.
When a gas is compressed, its temperature, pressure, and density
tend to increase. When a gas is expanded, its temperature, pressure,
and density tend to decrease. For a gas in a rocket engine, we can
only use equation 4, not equation 6.

Quantifying how the speed and density
of the gas change as a function of the
channel area requires advanced analysis
that we won’t cover in this course.
If you’re curious about this, check
out Mechanics and Thermodynamics of
Propulsion by Philip G. Hill and Carl
Peterson.

As the gas flows downstream, the decreasing channel area accelerates
the gas and compresses it. In other words, the gas travels at a faster
speed and the density of the gas increases. Something very interest-
ing happens to the gas as it gets denser and faster. The speed of the
gas reaches a critical threshold: the speed of sound of the gas.

definition 8.2 The speed of sound is the speed at which
pressure disturbances travel through a medium. The speed of
sound in an ideal gas is given by the following equation:

a =
√

γRT (8)

where a is the speed of sound, γ is the specific heat ratio of
the gas, R is the gas constant, and T is the temperature of the
gas. Note that R is the universal gas constant divided by the
molecular mass of the gas.

definition 8.3 The ratio of the speed of a moving body
to the local speed of sound is called the Mach number. The
Mach number is denoted by M and can be computed using
the following equation:

M =
v
a

(9)

where v is the speed of the moving body and a is the local
speed of sound. We use the term local to specify the speed of
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sound at the location of the moving body. In some situations,
like in a rocket engine, the speed of sound changes depending
on the location.

When the gas speed exceeds its own speed of sound, we say that
the gas is supersonic. In this case the Mach number is greater than 1.
When the gas speed is less than its own speed of sound, the gas is
subsonic and has a Mach number between 0 and 1. When the gas is
traveling exactly at its own speed of sound, the gas is sonic or tran-
sonic and has a Mach number of 1.

Gases behave very strangely when they are supersonic. For super-
sonic gases, when the channel area decreases, the speed of the gas
decreases. When the channel area increases, the speed of the gas
increases. This is the exact opposite of what happens for subsonic
gases, which is a very non-intuitive result!

Figure 5: Me pretending like supersonic
fluid flow makes total sense.Rocket Nozzle Geometry

A chemical rocket engine, meaning the combustion chamber and
nozzle, can be divided into three regions, which are labeled in Fig-
ure 6. The shape of the rocket nozzle is called converging-diverging
because the flow area decreases in the first region, reaches a mini-
mum at the second region, and increases throughout the third region.

Transonic

SupersonicSubsonic
M < 1 M > 1

M = 1

Figure 6: Converging-diverging chemi-
cal rocket nozzle with gas speed regions
labeled.

After the combustion reaction completes, the gaseous products move
slowly towards the exit of the rocket engine. To accelerate the gas,
the flow area is decreased gradually until the minimum flow area
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is reached. During this initial acceleration phase, the gas is subsonic.
The point where the flow area is minimum is called the throat. The
flow area at the throat is chosen such that the gas velocity at the
throat is equal to the local speed of sound. At this point the gas is
transonic.

Finally, to accelerate the gas further, the area of the nozzle is in-
creased after the throat. The increasing area accelerates the supersonic
gas to even faster speeds. The exit area of the nozzle is made as large
as possible in order to accelerate the gas to the highest possible exit
velocity in order to maximize the thrust and specific impulse of the
rocket engine.

Rocket Nozzle Equations

In this section, we will review some equations that will help us de-
sign a converging-diverging rocket nozzle. Don’t worry about where
the equations come from or about memorizing them. Just be pre-
pared to use the equations in your calculations in the lab.

Throat Area

The area of the throat, At, is given by following equation:

At = ṁ
√

RTc

pc
√

γ

(
γ + 1

2

) γ+1
2(γ−1)

(10)

where ṁ is the mass flow rate of propellant entering the combustion
chamber, Tc is the chamber temperature, pc is the chamber pressure,
γ is the specific heat ratio of the gaseous combustion products, and R
is the gas constant.

The throat needs to be exactly the correct size to ensure that the
exhaust gases travel at the speed of sound when they pass through
the throat. Notice that the throat area only depends on the conditions
in the combustion chamber. In deriving equation 10, we start with
the initial conditions of the combustion gases, which are given by the
conditions in the combustion chamber. Then, using the conservation
of mass, momentum, and energy, we can determine how the speed
of the gas increases as the channel area decreases. We can find where
the gas velocity is equal to the local speed of sound and then solve
for the channel area at that point, which is the desired throat area.
Note: the speed of sound changes as the gas approaches the throat
because the temperature of the gas decreases as the gas accelerates!
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Area Ratio

The area ratio or expansion ratio, ε, of a chemical rocket nozzle is:

ε =
Ae

At
(11)

where Ae is the exit area and At is the throat area. The expansion ra-
tio for a typical rocket engine is about 40. Note that the exit area of a
nozzle can’t be made arbitrarily large because the larger the exit area,
the more massive the nozzle. At some point the performance gains
from making the exit area larger are canceled out by the increased
mass of the nozzle.

Given the conditions in the combustion chamber, we can use the
conservation of mass, momentum, and energy to solve for the gas
velocity, pressure, and temperature at the exit of the nozzle. This
analysis allows to relate the area ratio to the ratio of the exhaust pres-
sure to the chamber pressure, which is called the pressure ratio. The
area ratio is related to the pressure ratio by the following equation:

Ae

At
=

√
γ− 1
γ + 1

(γ + 1
2

) 1
1−γ
( pe

pc

)− 1
γ
(

1−
( pe

pc

) γ−1
γ
)−1/2

(12)

where pe is the exhaust pressure, pc is the chamber pressure, and γ

is the ratio of specific heats. Figure 7 shows a plot of the pressure
ratio versus the area ratio as specified by equation 12. Notice that
as the area ratio increases, the pressure ratio decreases. A larger
area ratio nozzle is able to expand the exhaust gases more, which
means the pressure drop through the nozzle is larger. Given the
chamber pressure, we can use the area ratio to calculate the exhaust
pressure of the gas. We need to know the exhaust pressure in order
to calculate the thrust, specific impulse, and exhaust velocity.

Designing a rocket nozzle is an iterative process. We can start by
using the minimum allowable exhaust pressure, which is specified by
the flow separation condition:

pe

∣∣∣
min

= 0.4 pa

∣∣∣
max

(13)

where pa is the ambient pressure. The maximum allowable area ratio
can be computed using the minimum allowable exhaust pressure. If
the maximum area ratio is too large, perhaps because the mass of the
nozzle would be too high, then a smaller area ratio can be chosen.
The exhaust pressure for the chosen area ratio can be solved for using
equation 13 using numerical methods.
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Figure 7: This graph shows the rela-
tionship between the area ratio and
the pressure ratio as specified by equa-
tion 12. Note that a specific heat ratio of
1.26 was used.

Exhaust Velocity If you’re interesting in seeing how
this equation is derived, read the next
section, which is optional.

The exhaust velocity of a chemical rocket is given by the following
expression:

ue =

√√√√ 2γ

γ− 1
R

M
Tc

(
1−

( pe

pc

) γ−1
γ

)
(14)

where γ is the specific heat ratio of the exhaust gas, R is the univer-
sal gas constant, M is the mean molecular mass of the exhaust gas, Tc

is the chamber temperature, pe is the pressure of the exhaust at the
nozzle exit plane, and pc is the chamber pressure.

Many of the quantities in equation 15 are set by the initial condi-
tions of the combustion reaction. The chamber pressure is typically
selected to be as high as possible. This ensures that the chemical
combustion reaction is completed quickly with no leftover reactants.
High chamber pressures also help increase the thrust and specific
impulse of the rocket. However, the pressure cannot be arbitrarily
high because the combustion chamber would need thick walls to
withstand the high pressure. At a certain point the extra mass of the
combustion chamber becomes a disadvantage.

The chamber temperature, or combustion temperature, can be de-
termined given the fuel-to-oxidizer ratio and the chamber pressure.
Typically, the chamber temperature is chosen to be as high as possi-
ble, since the higher the temperature, the higher the exhaust velocity.
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However, the chamber temperature cannot be arbitrarily high, be-
cause the walls of the combustion chamber could melt!

The pressure ratio, pe/pc, is determined by the area ratio of the noz-
zle. Figure 7 shows that increasing the area ratio decreases the pres-
sure ratio. From equation 14, we can see that the exhaust velocity
increases as the pressure ratio decreases. To maximize the exhaust
velocity, and thus the thrust and specific impulse, the area ratio of the
nozzle is chosen to be as large as possible.

The specific heat ratio and the mean molecular mass of the exhaust
gas are properties that can be determined from the composition of
the exhaust gases. The exhaust gases are a combination of many
types of molecular gases (such as carbon dioxide, carbon monoxide,
water vapor, diatomic hydrogen, etc.) which are a product of the
combustion reaction. The ratios of the reaction products are deter-
mined by the fuel-to-oxidizer ratio and the chamber pressure.

DERIVATION OF THE EXHAUST VELOCITY*
This section is optional!

The exhaust velocity of a chemical rocket can be found using the
conservation of energy. We will assume that the increase in kinetic
energy, KE, of the gas is equal to the decrease in its enthalpy, H:

∆KE = −∆H (15)

To use equation 15, we must assume that no work is done on the
gas by the surroundings and no work is done by the gas on the sur-
roundings. We also must assume that no heat is transferred between
the gas and its surroundings. The second assumption is not quite
true because the hot gases transfer heat to the walls of the nozzle.
However, the amount of heat lost is only ∼1% of the enthalpy of
the gas. The other 99% of the enthalpy is converted into the kinetic
energy of the exhaust gases, so our assumption is okay.

When it comes to analyzing gases, it’s easier to work with quantities
that are per unit mass. The kinetic energy per unit mass, ke is equal
to 1

2 u2, where u is the gas velocity. The change in enthalpy per unit
mass is denoted by ∆h. We can express the conservation of energy
per unit mass as:

∆ke = −∆h (16)
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definition 8.4 The enthalpy of a gas is essentially a mea-
sure of the ability of the gas to do work. It can be thought
of as a potential energy. The enthalpy per unit mass can be
mathematically expressed as:

h = e + pv (17)

where e is the internal energy, p is the pressure, and v is the
specific volume. Note: the specific volume is the inverse of the
density of the gas: v = 1/ρ. Using the first law of thermody-
namics, which is a statement of the conservation of energy, we
can express the change in enthalpy, dh, as:

dh = de + pdv = cpdT (18)

where de is the change in internal energy, dv is the change in
specific volume, cp is the specific heat at constant pressure,
and dT is the change in temperature.

Let’s assume that the initial state of the gas is given by the conditions
in the combustion chamber. The velocity of the gas in the combustion
chamber is denoted by uc. The final state of the gas is given by the
conditions at the exit of the nozzle. Here, the velocity of the gas is the
exhaust velocity, ue. Therefore, the change in kinetic energy per unit
mass of the gas is:

∆ke =
1
2

ue
2 − 1

2
uc

2 (19)

We will assume that the velocity of the gas in the combustion cham-
ber is approximately zero. Therefore the change in kinetic energy per
unit mass is 1

2 ue
2.

Now let’s find the change in enthalpy per unit mass, ∆h. The change
in enthalpy per unit mass can be expressed in terms of the change in
temperature of the gas:

∆h = cp(Te − Tc) (20)

where cp is the specific heat capacity at constant pressure, Te is the
temperature of the exhaust, and Tc is the chamber temperature.

Now let’s put together equations 16, 19, and 20:

∆ke = ∆e

1
2

ue
2 = −cp(Te − Tc)

(21)
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We can solve for the exhaust velocity:

ue =

√
2cp

(
Tc − Te

)
(22)

Next, we need to do some mathematical manipulation to write the
equation in terms of the temperature ratio Te/Tc:

ue =

√
2cpTc

(
1− Te

Tc

)
(23)

When analyzing a chemical rocket engine, the chamber tempera-
ture is usually known. The specific heat capacity, cp, is also usually
known. Typically cp is written in terms of the ratio of specific heats,
γ, the universal gas constant, R, and the molecular mass of the gas,
M:

cp =
γ

γ− 1
R

M
(24)

The temperature of the exhaust isn’t used very often. Instead, the
exhaust pressure is preferred because it’s related to the geometry of
the nozzle through the area ratio. We can relate the temperature ratio
to the pressure ratio using the isentropic relations.

definition 8.5 The isentropic relations are a set of equa-
tions that describe how the temperature, pressure, and density
of a compressible gas are related. We assume that the gas is
an ideal gas, the entropy of the gas is constant, and no heat
is absorbed or lost by the gas. The isentropic relations are as
follows:

ρ1

ρ2
=

(
T1

T2

)1/γ−1

=

(
p1

p2

)1/γ

(25)

where ρ is the density, T is the temperature, and p is the pres-
sure. The quantities with subscript "1" denote the state of
the gas at a particular location. The quantities with subscript
"2" denote the state of the gas at a different location. These
equations are essential for calculating the state of the gas as it
expands through the rocket nozzle.

Using the isentropic relations, we can relate the temperature and
pressure in the combustion chamber to the temperature and pressure
at the nozzle exit:

Te

Tc
=

(
pe

pc

)(γ−1)/γ

(26)
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Finally, using equations 24 and 26, we can write the exhaust velocity
of a chemical rocket as:

ue =

√√√√ 2γ

γ− 1
R

M
Tc

(
1−

( pe

pc

) γ−1
γ

)
(27)

where γ is the specific heat ratio of the exhaust gas, R is the univer-
sal gas constant, M is the mean molecular mass of the exhaust gas, Tc

is the chamber temperature, pe is the pressure of the exhaust at the
nozzle exit plane, and pc is the chamber pressure. Figure 8: We did it!
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